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Purpose. To develop a predictive pharmacokinetic model for propofol that could inform development of
a dosing strategy for the obese population.
Methods. A prior model that included a nonlinear relationship between clearance (CL) and Total Body
Weight (TBW) was re-parameterized with a linear relationship between CL and Lean Body Weight
(LBW). The predictive performance of both models was compared and the LBW model used to explore
propofol exposure from normal to obese patients. A dosing strategy was evaluated that normalized
awakening time across a range of patient weights.
Results. The predictive performance of the LBW model was similar to the nonlinear TBW model for
normal weighted subjects. Simulations in 70–160 kg subjects indicated that dosing linearly on TBW (label
recommendation), in contrast to LBW, resulted in increased plasma concentrations in the larger weight
groups. This result might explain why obese subjects take longer to awaken from anesthesia compared to
normal weighted subjects. Dosing by LBW normalized patient awakening times across this weight range.
Conclusions. LBWas a covariate provides a plausible mechanistic explanation for an observed nonlinear
increase in drug CL with TBW and may be suitable for developing dosing strategies that are appropriate
for use in the obese population.

KEY WORDS: lean body weight; mechanistic covariates; obesity; population pharmacokinetics;
propofol.

INTRODUCTION

When building population pharmacokinetic/pharmaco-
dynamic (PKPD) models, identification of covariates that can
explain some of the variability in the PKPD parameters is
often a primary goal. These models can help define optimal
dosing schedules and explore if covariate specific dosing
regimens are necessary to normalize exposure across a range
of varying population demographics. During development of
such models, both objective and subjective measures can be
employed by the modeler to aid identification and subsequent
retention of covariates in the model. These measures include
a combination of statistical tests, assessment of the biological,
mechanistic and clinical relevance of the covariate together
with prior knowledge of the modeled system.

The final model’s predictive performance is not only
dependent on the choice of methods used to select covariates,
but also the incorporation of covariates that underlie
biological behaviour. Mechanistic covariates are those which
are expected to describe the parameter of interest as a
function of some known biological or physiological phenom-

ena, e.g. renal function on clearance (CL) for a drug which is
renally cleared, whereas empirical covariates are descriptive
explanations of variability that have no clear physiological
basis, e.g. hair colour. A covariate model can therefore function
as either a descriptive model, which might include empirical
covariates, or a predictive model, which, by including mecha-
nistic covariates, can be used for simulation purposes outside of
the population used to build themodel. The utility of descriptive
models is somewhat limited, serving to primarily explain the
observations, whereas predictive models can be used to inform
decision making during a drug development program (1,2).

Total Body Weight (TBW) is commonly used as a
covariate to describe changes in pharmacokinetic parameters
in relation to subject size. We propose that TBW is suitable as
a covariate on CL for subjects of normal body composition as
it closely correlates with underlying physiological mecha-
nisms, but that it loses its predictive properties when trans-
ported to the obese population. The consequence of using
TBW as a body size metric to describe CL in the obese
population has been recently discussed by Han et al. (3).
Briefly, TBW ignores differences in body composition across
a range of weights and inherently assumes that structural and
functional aspects remain similar in the lean and obese
population. However, obese patients in comparison to their
lean counterparts have a much larger ratio of fat to lean
tissues, with Lean Body Weight (LBW) increasing non-
linearly with TBW. As lean tissues are responsible for the
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majority of metabolic processes in the body (4), CL can be
overestimated for this patient group if scaled by TBW from
the normal weight population. Therefore, it has been
hypothesized that LBW is a more suitable descriptor for CL
due to its mechanistic ability to describe changes in body
composition with patient size, especially in studies that
include obese subjects (5).

Indeed, various PK studies in adults have identified a
nonlinear relationship between drug CL and TBW for both
hepatic and renally eliminated drugs, supporting the LBW
hypothesis (6–12). In studies where LBWwas not considered as
a covariate, the curvilinear relationship has often been
accounted for by the inclusion of covariates such as body
surface area (BSA), TBW with an allometric coefficient (either
fixed to ¾ or estimated), or inclusion of empirically derived
body composition metrics such as ‘PK mass’ (12). However, as
with TBW, these metrics are only appropriate for describing PK
within the study population demographics and are unlikely to
predict CL outside the ‘normal’ weight range. Furthermore, it is
pertinent to mention that despite any advantages gained by
incorporating these metrics into a PK model, dose strategies are
rarely developed based on these nonlinear relationships and
instead, with the exception of chemotherapeutic agents for
which BSA is often used, most drug labels recommend dosing
linearly according to TBW. LBWas described by Janmahasatian
et al. (13) provides a plausible mechanistic explanation for such
observations and may be a suitable metric to extrapolate into
the obese population (3).

The material presented in this paper seeks to demon-
strate that LBW can be chosen as a mechanistic covariate on
CL for propofol in preference to covariates chosen on
statistical grounds, with minimal loss in the model’s perfor-
mance. This approach was necessary to develop a model that
could be used to propose a suitable dosing strategy for
propofol in the obese.

Propofol is a commonly used intravenous anesthetic for
induction and maintenance of general anesthesia (14). It
exhibits high systemic clearance (CL) by extensive liver and
kidney metabolism which respectively constitute approxi-
mately 70% and 30% of total CL (15,16). The approved
label for propofol indicates that dosing should be determined
on a mg/kg total body weight (TBW) basis for all patients
(17). However, caution is advised when dosing obese patients
by this method as it may lead to higher than expected plasma
concentrations and an increased risk of deleterious haemody-
namic side effects (18–24). Additionally, anecdotal evidence
from anesthetists suggests the current dosing label is unsuitable
for the obese population as it results in deeper anesthesia and
increased time to awakening (personal communication). Thus,
our aim was to develop an improved dosing schedule to
normalize responses in the obese population.

MATERIALS AND METHODS

Previously published models for propofol had been
developed in predominantly non-obese populations (25–29)
i.e. body mass index (BMI)<30 kg m−2 or TBW<100 kg and
included either a linear relationship with TBW or empirically
derived covariate relationships on CL e.g. CL=1.89+((TBW−
77)×0.0456)+ ((LBWJames−59)×−0.0681)+ ((HT−177)×
0.0264) L min−1 (27). Although these models would have been

suitable for simulating and developing dosing strategies within
the weight range in which they were developed, i.e. in patients
of normal body composition, it was anticipated that they would
be unsuitable to simulate concentration time profiles in the
obese due to the lack of a mechanistic covariate relationship to
predict CL in the obese population. Therefore, a previously
published model that had potential to be re-parameterized was
identified from the literature. This model included a three-
compartment disposition model and described a nonlinear
relationship between CL and TBW by means of an estimated
exponent (θ) of 0.75, where clearance (CL)=86.4 L h−1×
(TBW/70)θ (28). We hypothesized that the empirical nonlinear
covariate relationship between CL and TBWcould be replaced
by a linear covariate relationship with LBW, allowing the
model to predict more accurately into the obese population
and explain why dosing on TBW is unsuitable for obese
patients. Thus, the specific objectives of this study were to (1)
evaluate if a linear LBW covariate model could replace a
nonlinear TBW covariate model for propofol clearance, and
(2) explore how awakening time might vary following different
propofol dosing regimens in the obese population.

Overview

PK datasets were simulated from the posterior distribu-
tion using a population PK model reported by Schuttler and
Ihmsen (28) that included multiple covariates (henceforth
referred to as the ‘Full’ model). Individual PK parameters
were estimated using both (1) the Full model and (2) a ‘LBW’
model, which was the same as the Full model except that we
removed the nonlinear TBW covariate relationship on CL
and replaced it with a linear function of LBW on CL. For
both models the covariate relationships for volumes of
distribution and initial typical parameter estimates were the
same as the Full model. The predictive performance of the
LBWmodel was compared to that of the Full model. The LBW
model was then used to explore propofol exposure across the
normal to obese patient range in order to determine an optimal
dosing metric that helps normalize awakening time between
obese and normal weighted patients.

Simulation of Datasets

Study Populations

One-hundred datasets, each containing 198 subjects,
were simulated for the study. Patient covariates were
simulated from a covariate distribution model determined
from a population of general medical patients at Christchurch
Hospital, Christchurch, New Zealand (30). For each sex, the
model consisted of a vector of population means of weight,
height and age, and a variance–covariance matrix of log-
normal weight, height and age covariate distributions
(Table I). Datasets were simulated with the following
demographics: 52% male/48% female with age constrained
to 17–60 years, height 130–195 cm and weight 40–100 kg.
Weight was stratified into three groups of 66 subjects each of
40–60 kg, 60–80 kg and 80–100 kg (i.e. 198 subjects total per
dataset) to maximize the likelihood of identifying the
relationship between weight/body composition and clearance
in the estimation procedure. As our aim was to explore
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variability in CL as a function of body size and composition
only, age was limited to 60 years to exclude any confounding
effects of age on CL above 60 years as reported in the original
PK model (Table II) (28). Simulated populations were
validated by assessment of population covariate means,
ranges, and frequency histograms.

Simulation of PK Data: The Input–Output Model

Pharmacokinetic data were simulated for each individual
from the Full model (Table II) with between-subject variabil-
ity (BSV) log-normally distributed as shown in Equation 1:

�i ¼ �pop � e�i ð1Þ

where θi is the parameter value for the ith individual, θpop is
the population parameter value, and ηi is normally distributed
with a mean of zero and variance of Ω. Residual unexplained
variability (RUV) was defined as heteroscedastic with a
coefficient of variation (CV) of 17.6% (28).

For the simulation-estimation experiments, subjects were
administered a 2 mg/kg bolus dose of propofol over 60 s,
which represents a typical induction dose for propofol
anesthesia (17). Seven sampling time points for the simu-
lations were defined using D-optimality in WinPOPT©
(version 1.1.1 beta (31)) using the final pharmacokinetic
parameter values from the Full model (28). The seven
sampling times were at the end of the infusion, then 4 s,

4.9 min, 16.4 min, 1.2, 4.3 and 17.9 h after infusion, resulting
in 1,386 observations in total for each dataset.

Visual Predictive Check of Simulated Data

In order to assess the ability of the simulation platform to
generate adult CL data representative of the original Full
model data, we performed a visual predictive check (VPC) in
which simulated CL data from the Full model was compared
to the original data reported in Fig. 1 of the manuscript by
Schuttler and Ihmsen (28). For this purpose, we defined adult
data in the original figure as TBW >40 kg (n=174). We
simulated 174,000 subjects (i.e. 1,000 datasets of 174 subjects
each) of weight 40–100 kg and determined the 10th, 50th and
90th percentiles of CL for each 5 kg weight range. These were
overlaid with the original CL data which were obtained from
the original manuscript (28) using the data extraction tool
TechDig version 2.0© (R.B. Jones 1998). Approximately 10%
of original data was expected to fall below, and 10% above,
the 10th and 90th prediction intervals, respectively.

Estimation Procedure

Two models were fitted to the simulated datasets: the
Full model (i.e. the same model used for simulation of data,
Table II) and a LBW model (Table III). The LBW model
differed from the Full model in that the nonlinear TBW
covariate relationship on CL was replaced with a linear LBW
relationship, where LBW (13) was determined as:

LBW kgð Þ ¼ 9; 270 � TBW kgð Þ
6; 680þ 216 � BMI kg �m�2� � for males ð2Þ

LBW kgð Þ ¼ 9; 270 � TBW kgð Þ
8; 780þ 244 � BMI kg �m�2� � for females ð3Þ

In all estimations, the covariate relationships for volume
and initial typical parameter estimates were unchanged from
the Full model.

Table II. The Full Model that Was Used for Simulating the ‘True’ Data

Reference Drug, model, n, M:F Parameter value %CV

Schuttler and Ihmsen (28) Propofol, 3-cpt, 270 patients, 150:120 CL=86.4 L h−1·(TBW/70)0.75 if age <60 37.4
CL=86.4 L h−1· (TBW/70) 0.75−(age−60) ·2.7 if age >60
CL2=135 L h−1· (TBW/70)0.62·(1+ven·−0.4)·(1+bol·2.02) 51.9
CL3=55.2 L h−1· (TBW/70)0.55· (1+bol·−0.48) 50.9
V1=9.3 L· (TBW/70)0.71· (age/30)−0.39· (1+bol·1.61) 40.0
V2=44.2 L· (TBW/70)0.61· (1+bol·0.73) 54.8
V3=266 L 46.9

The same model was fit to the ‘true’ data in the estimation procedure to allow comparison of predictive ability with the competing LBW model,
in which the nonlinear TBW relationship on CL was replaced by a linear LBW relationship on CL
CL elimination clearance (L h−1 ), CL2, CL3 inter-compartmental clearances (L h−1 ), V1 volume of central compartment (L), V2, V3 volumes of
compartments two and three (L), TBW total body weight, ven 1 for venous sampling all subjects, bol 1 for bolus dosing all subjects, 3-cpt three
compartment model, %CV between subject variability expressed as percentage of coefficient of variation

Table I. Parameter Values for the Population Simulation Covariate
Distribution Model

Parameter Males Females

Mean [variance] Age (years) 55 [0.159] 54 [0.172]
Weight (kg) 77.5 [0.0327] 67.7 [0.056]
Height (m) 1.75 [0.0016] 1.63 [0.00192]

Covariance Age–weight −0.004 −0.014
Age–height −0.001 −0.003
Weight–height 0.003 0.004

1628 McLeay, Morrish, Kirkpatrick and Green



Model Evaluation

Parameter Bias and Precision

The predictive performance of the LBW model was
compared to the Full model by assessment of model bias and
precision. Bias was evaluated by computing the mean error
(ME) between the observed and individual predicted param-
eter values:

ME ¼
X

Pt � Pp
� �� �.

n ð4Þ

where Pt is the simulated (true) parameter value, Pp is the
predicted value, and n is the number of subjects in the
dataset. Precision was evaluated by computing the root mean
squared error (RMSE) between the true parameter values
and the individual predictions in each dataset where:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

Pt � Pp
� �2� �.

n

r
ð5Þ

Estimates of Parameter Variability

To evaluate the ability of the LBW model to correctly
estimate random effects, median CV% values from the one-
hundred estimations were compared between models.

Numerical Predictive Check

A numerical predictive check (NPC) was performed as
follows: a dataset of 198 subjects was simulated from the Full
model and considered as the ‘true’ data. The LBW model was
fitted to the ‘true’ data and final population parameter
estimates were used to simulate new data (n=1,000 datasets)
for the same 198 subjects and seven time points. The 10th to
90th prediction intervals from the 1,000 simulated datasets
were determined for each time point and the percent of ‘true’
data outside this range was calculated. This process was
repeated for ten ‘true’ datasets. Analogous to the VPC
evaluation process, approximately 10% of true data should

be expected to fall below and 10% above, the 10th and 90th
prediction intervals generated by an acceptable model.

To allow the predictive performance of the LBW model
to be compared to that of the Full model, the same process
was also performed for the Full model using the same ten
‘true’ datasets.

Simulation Dose–Response Study

Pharmacokinetics

The LBWmodel was used to simulate PK profiles for 4,000
male subjects (180 cm, 30 years) in four weight categories of 70,
100, 130 and 160 kg, given a dosing regimen of (a) a 2 mg/kg
bolus dose followed by a 1 h, 6 mg/kg per hour infusion based
linearly on TBW (according to label recommendations), and (b)
a 2.5 mg/kg bolus dose followed by a 1 h, 7.6 mg/kg per hour
infusion based linearly on LBW (equivalent to the recommen-
ded dose per kg of TBW for a 70 kg subject). Concentration data
were simulated based on a dense sampling scheme of 22
concentrations over 0–3 h post-infusion.

Pharmacodynamics

To consider the effects that each dosing strategy might
have on expected patient awakening times, 1,000 patients
were generated by stochastic simulation for each weight
group and the percentage of patients still asleep over time,
post-infusion, was calculated based on a reported awakening
concentration of 1.07 μg/ml (32).

Computer System

The nonlinear mixed effects modeling program NON-
MEM version V (GloboMax, LLC, Hanover, MD) was used
for all simulations and estimations in this study, using the
Wings for NONMEM (version 408, http://wfn.sourceforge.
net/) interface. Estimations were performed using first order
conditional estimation with interaction (FOCE-I). Results
were analysed using R version 2.6.1 for Windows (The R

Table III. The Competing LBW Model Used for Re-estimation

Model Parameter value

LBW model CL=86.4 L h−1·(LBW/55a)
CL2=135 L h−1·(TBW/70)0.62·(1+ven·−0.4)·

(1+bol·2.02)
CL3=55.2 L h−1·(TBW/70)0.55·(1+bol·−0.48)
V1=9.3 L·(TBW/70)0.71·(age/30)−0.39·(1+bol·1.61)
V2=44.2 L·(TBW/70)0.61·(1+bol·0.73)
V3=266 L

This model was the same as the Full model except the nonlinear
TBW relationship on CL was replaced by a linear LBW relationship
on CL (highlighted in bold)
CL elimination clearance (L h−1 ), CL2, CL3 inter-compartmental
clearances (L h−1 ), V1 volume of central compartment (L), V2, V3

volumes of compartments two and three (L), TBW total body weight,
LBW lean body weight as determined by the LBW2005 equation (13),
ven 1 for venous sampling all subjects, bol 1 for bolus dosing all
subjects, 3-cpt three compartment model
aApproximate median LBW of population

Fig. 1. Visual predictive check of simulated CL data. The solid lines
represent the 10th and 90th percentiles of the simulated adult data
and the dashed line the median. Original CL data as reported by
Schuttler and Ihmsen (28) is overlaid.
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Foundation for Statistical Computing) and Prism 5 for
Windows v5.01 (GraphPad Software, Inc.). All runs were
completed on an Intel® Xeon™ 2.4 GHz processor with a
G77 compiler.

RESULTS

Simulation of Datasets

Demographics of Simulated Populations

Histograms of population demographics showed correct
distributions around the population mean (results not shown)
with values correctly constrained, indicating that the simulat-
ed populations were representative of the true population
from which the simulation platform was developed.

Verification of Simulation Platform

Figure 1 shows the 10th, 50th and 90th percentiles of
simulated CL values from the Full model overlaid with the
original CL data reported by Schuttler and Ihmsen (28).
Results show that the simulated data displayed a similar
relationship between CL and TBW to that of the original
data, suggesting that the simulation platform was able to
generate CL data representative of the original data from
which the Full model was developed.

Model Evaluation

Parameter Bias and Precision

The predictive performance of the LBW model was
compared to the Full model by assessment of model bias and
precision, determined as the ME and RMSE of individual
parameter estimates from simulated (true) parameter values.
Estimation of individual CL values using the Full model and
the LBW model showed that both models performed
similarly, with median errors of −3.85 and −3.97 L h−1,
respectively (Fig. 2a). As would be expected due to model
simplification, the estimates of CL from the LBW model were
more biased than the Full model. However, given that the
mean value of CL in the population was 91 L h−1, the median
bias of the LBW model was less than 5% and was therefore
considered comparable to the Full model. The precision of
CL estimates was similar between models, with median
RMSE values of 8.16 and 8.31 L h−1 for the Full and LBW
model, respectively (Fig. 2b).

The bias and precision of other individual PK parameter
estimates were also comparable between models. Table IV
presents the ME and RMSE results from the inter-compart-
mental clearances CL2 and CL3 and volume parameters V1–3.
The LBW model underestimated CL2 by only 0.7% (deter-
mined as the median percent bias from mean parameter
values) and overestimated CL3 by 0.6% (determined as the
median percent bias from mean parameter values), displaying
similar precision for CL2 and CL3 to that of the Full model.
For volume parameters, estimates were again similar between
the models, with the median bias of V1, V2 and V3 within
0.6%, 0.7% and 16.2% of the mean individual parameter
values, respectively.

To assess whether random effects were inflated for the
LBW model in order to better fit to the data, median %CV
estimates were compared to the simulation values. Estimates
were comparable between models (Table V), with all
estimates of BSV (as %CV) within 9% of simulation values
and RUV within 0.2%. All estimated values of BSV were
lower than simulation values.

Numerical Predictive Check

The total percentage of ‘true’ data falling below and
above the 10th and 90th prediction interval (presented as
median % [25th, 75th percentile] of 10 VPCs) of the LBW
model was 6.4% [5.6, 7.2] and 10.3% [9.8, 10.5], respectively.
As these values were close to 10%, this confirmed that the
LBW model was able to adequately describe the ‘true’ data
generated from the Full model. Furthermore, the LBW
model showed a similar predictive ability to that of the Full
model, which had 9.1% [8.1, 9.5] of ‘true’ data falling below
and 12.0% [11.4, 13.1] above its 10th to 90th prediction
interval, respectively. Results from one NPC that are
representative of all ten NPCs are presented in Table VI.

Simulation Dosing Study

Under the assumptions of the simulation study, it was
concluded that the LBW model appeared to have similar
predictive properties to the empirically derived Full model
across the normal weight range. Therefore, the LBW model
was used to explore the effects of dosing propofol on TBW
vs. dosing on LBW across a large range of body weights. The
typical predicted concentration–time profiles for a weight of
70, 100, 130 and 160 kg are given in Fig. 3. As expected,
dosing linearly on TBW results in increasing plasma concen-
trations as patient weight increases (Fig. 3a), whereas dosing
on LBW results in similar profiles across all TBW (Fig. 3b).

To investigate the pharmacodynamic effects of dosing on
TBW vs. dosing on LBW, an awakening concentration of

-1
2
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0 -8 -6 -4 -2 0 2

LBW

Full

a

ME (L.h-1)

0 2 4 6 8 10 12 14

LBW

Full

b

RMSE (L.h-1)

Fig. 2. The a ME (bias) and b RMSE (precision) between the
simulated individual CL values and predicted CL values obtained
with the Full and LBW model (n=100 runs). The mean individual
value of CL was 91 L h−1. Note: different scales. The centre line is the
median. The length of each box represents the 25–75% range and the
whiskers represent the 10–90% range.
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1.07 μg/ml (32) was used to determine the percentage of
subjects still asleep over time, post-infusion, for each weight
group based on each individual’s concentration-time profile.
Results are presented in Fig. 4. Dosing on TBW suggested an
increased time to awakening in the larger weight groups
(Fig. 4a), with 77% of 160 kg subjects vs. 42% of 70 kg
subjects still asleep at 30 min, whereas dosing on LBW
resulted in only slight differences between groups (Fig. 4b).

DISCUSSION

In this study we investigated the difference in a model’s
bias and precision following substitution of an empirically
derived nonlinear covariate relationship between TBW and
CL with a presumed linear mechanistic relationship between
LBW and CL. The covariate substitution was performed to
specifically enhance the model’s predictive ability beyond the
demographic range in which it was developed, allowing
extrapolation of the model into the obese population. To the
best of our knowledge, this is the first study that has attempted
covariate substitution in a prior model for such a purpose.

For the study, we selected a model in which a nonlinear
relationship between TBWand CL had been identified by the
authors and described by means of an empirical estimated
power function on TBW (28). We loosely use the term
‘empirical’ in this context as we recognize that TBW,
especially scaled allometrically, has been used to explain
variability in CL across individuals of differing size and
normal body composition, including children. We contest
however that it has limited value when used to scale between
normal and obese subjects. Thus, LBW provided a plausible
mechanistic basis for this observation and a possible means to
allow prediction of PK response in obese subjects, supported
by a recent review of pharmacokinetic studies that showed

LBW had the greatest success in describing CL across a range
of patient weights that specifically included the obese (5).

Results indicated that the LBW model had similar
predictive properties to the Full model across a normal
weight range. Furthermore, NPC results confirmed that the
LBW model was able to adequately describe the ‘true’ data
generated by the Full model. Therefore, we deemed the LBW
model acceptable to be used to simulate propofol concen-
trations across a wider weight range that specifically included
the obese in order to potentially explain observed differences
in obese compared to normal weight patients when dosing
propofol on TBW as per label recommendations. Simulations
showed that dosing on TBW, in contrast to dosing on LBW,
resulted in increased plasma concentrations in the larger
weight groups. This was not unexpected as maintenance
dosing is dependent on CL; however, it provides a plausible
explanation as to why dose individualization using TBW is
unsuitable for obese patients.

Both the Full and LBW models displayed some param-
eter bias under the study design, despite the WinPOPT
reported standard errors for the selected time points being
less than 4% for fixed effects and 10.6% for random effects.
Unlike D-optimality, however, NONMEM linearizes the
model when using a maximum likelihood approach. The bias
may have therefore been due to this linearization process in
NONMEM and may have been reduced in the simulation-

Table V. Median %CV as Estimated by the Full and LBW Models
from 100 Simulation-Estimation Experiments

Parameter Simulated value Full model LBW model

CL 37.4 32.4 35.5
CL2 51.9 44.9 45.4
CL3 50.9 42.5 42.1
V1 40.0 35.1 35.4
V2 54.8 49.4 49.7
V3 46.9 41.4 42.0
RUV 17.0 17.0 17.2

Table IV. The ME (bias) and RMSE (precision) Between the Simulated Individual Parameter Values (Inter-Compartmental Clearances CL2

and CL3 and Volumes V1–3) and Predicted Parameter Values Obtained with the Full and LBW Model (n=100 Runs)

Parameter Mean individual value

ME RMSE

Full model LBW model Full model LBW model

CL2 (L h−1) 269.5 1.36 [−6.63, 9.31] 1.95 [−8.19, 8.81] 78.90 [71.38, 86.45] 79.01 [71.72, 87.71]
CL3 (L h−1) 31.6 −0.43 [−3.38, 2.66] −0.18 [−3.35, 2.92] 11.68 [10.42, 13.88] 11.61 [10.35, 13.09]
V1 (L) 22.9 −0.07 [−0.52, 0.25] −0.13 [−0.63, 0.26] 3.23 [2.98, 3.55] 3.24 [2.98, 3.58]
V2 (L) 86.0 0.58 [−5.51, 5.02] −0.10 [−6.59, 4.03] 23.30 [20.82, 25.48] 23.25 [20.52, 26.12]
V3 (L) 289.1 46.89 [26.86, 59.96] 44.99 [29.12, 62.38] 114.2 [100.9, 125.9] 114.6 [101.1, 126.0]

Data is presented as median [10th, 90th percentile]

Table VI. NPC Results from One Example Dataset, Showing the
Percentage of ‘True’ Data Generated from the Full Model Falling
Outside the 10th to 90th Prediction Interval (PI) Simulated by Each

Model at Each Time Point

Time point Time

Full model LBW model

<10% >90% <10% >90%

1 End of infusion 8.6 14.6 5.1 12.1
2 4 s 7.1 12.6 4.5 9.6
3 4.9 min 7.6 16.7 8.1 15.2
4 16.4 min 5.1 10.1 6.1 8.1
5 1.2 h 8.1 13.6 6.6 10.1
6 4.3 h 10.6 10.1 8.1 8.6
7 17.9 h 9.1 13.1 7.6 9.1

Mean % 8.0 13.0 6.6 10.4
Total %
outside PI

21.0 17.0

An acceptable model should have ~10% true data falling below, and
~10% above, the 10th to 90th PI across all time points
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estimation experiments by increasing the number of sampling
times and/or by using an estimation method that does not
make the same linearization assumptions. Due to the
computational intensiveness of the experiments, however,
we chose to use seven time points rather than a fully
saturated design which in itself is not ‘sparse’. Furthermore,
the version of NONMEM we used for the study (version V)
does not allow use of the Laplacian method with the
INTERACTION option which again could have helped
minimize the bias. Nonetheless, the observed bias in both
models does not detract from our finding that there was
minimal loss in model performance when the original
nonlinear TBW relationship on CL was substituted with a
linear LBW relationship.

Under the assumption that LBW describes propofol CL,
we further explored how dose individualization according to
LBW could normalize patient PD responses across the weight
range of 70–160 kg. The LBW dosing regimen was selected
based on a 70 kg healthy weight subject (BMI of 21.6 kg m−2)
receiving the same dose as recommended by the label. As

expected, dosing by this method decreased awakening times
of the heavier weight groups to that observed in the 70 kg
weight group, normalizing patient awakening times.

In clinical practice, a randomized controlled trial showed
that dosing on LBW compared to conventional dosing
(dosing linearly per kg TBW) for enoxaparin reduced adverse
events with no apparent reduction in treatment effectiveness
(33). Interestingly, this particular study also demonstrated the
uncertainty physicians have when dosing their obese patients
on TBW due to concerns of potential overdose, with all
patients >100 kg in the conventional arm being under-dosed
according to label recommendations (33). Indeed, further
evidence will be required to confirm the simulation findings
of our study and a prospective population PKPD study to
further investigate the LBW hypothesis for propofol CL and
dosing is currently underway.

The present study highlights the need for, and encour-
ages the development of predictive models for learning.
Again, we iterate that for a model to be predictive outside
of the demographics from which it was derived, mechanistic
covariates must be used (2). However, poor study design,
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Fig. 4. Percent of population asleep, post-infusion, when dosed
linearly according to a TBW versus b LBW.
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Fig. 3. Deterministic simulation showing differences in typical plasma
concentrations across a range of patient weights when dosed linearly
according to a TBW versus b LBW.
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limitations in current knowledge of biological processes, a
limited record of physiological covariates in study data and
homogeneous population groups can result in an inability to
identify mechanistic covariates. So too can force-fitting
desired covariates to PKPD data because of incorrect prior
assumptions about parameter–covariate relationships or reg-
ulatory requirements e.g. TBW as a covariate on CL for the
specific purpose of developing a TBW dosing strategy.
Additionally, the statistical significance of covariates can be
overstated, resulting in selection of empirical covariates, i.e.
those which are statistically significant yet only descriptive.

The effect of the study population demographic range on
the ability to discriminate between size scalars on drug CL
must also be considered. Across the normal weight range
(defined here as BMI of 20–25 kg m−2), all common size
descriptors e.g. TBW, LBW, BSA, TBW allometrically scaled,
are in close agreement when used to scale the typical
population mean value (Fig. 5a), which explains why LBW

was able to sufficiently replace the original relationship
between TBW and CL in the Full model.

Thus, any body size metric may be found to be
statistically significant for model inclusion during the cova-
riate selection process, despite another perhaps being the
‘true’ covariate, i.e. one which might mechanistically explain
variability across the whole demographic range, such as LBW.
Although the resulting model will sufficiently predict within
the range in which it was developed, size scalars become
increasingly disparate beyond this range (Fig. 5b) and the
model may not be useful for prediction outside the study
population demographics e.g. TBW has long been thought to
be a predictive covariate which can be used in a simulation
setting. This concept is not disputed for subjects of normal
weight. However, weight as a covariate loses its predictive
ability when extrapolated into the obese population.

This has two main implications for predictive model
development. Firstly, the preferential selection of a mecha-
nistic covariate over an empirical covariate should be
encouraged even at the expense of a slightly worse statistical
model fit (e.g. higher objective function). Secondly, the ability
to discriminate between covariates and hence identify a ‘true’
relationship may improve as the demographic range of the
study group is widened, especially if a stratification strategy is
employed (Han et al., in press).

Due to the assumptions required for such simulation
experiments, there are several limitations to this study. In
clinical practice, a patient’s propofol concentration on awak-
ening may vary depending on the type of surgery, concom-
itant medications and age, which would increase variability in
patient response. Additionally, we discounted the reported
decline in CL with age >60 years in the Full model (28) by
constraining the simulated study population to below 60 years.
Other factors have also been suggested to affect propofol PK
such as cardiac output (34) and hepatic blood flow (35,36) on
distribution and CL, respectively. Nevertheless, as the aim of
this study only focused on exploring variability in CL as a
function of body size and composition, our results still
demonstrate a possible explanation for observed increased
time to awakening when obese patients are dosed on TBW.
Furthermore, drug doses are most commonly scaled according
to some measurement of body size and therefore our proposal
to dose propofol on LBW is of practical use. We note also that
many obese surgical patients can weigh significantly more than
the largest weight we investigated (160 kg) and so greater
differences in patient outcomes might be accounted for with
LBW despite other contributing factors to PK variability.

CONCLUSION

In conclusion, we substituted a mechanistic covariate
relationship for an empirically derived relationship in an
attempt to enhance the predictive ability of a prior model
beyond the demographic range in which it was developed. In
this case, a nonlinear TBW relationship on CL in a propofol
model was replaced with a hypothesized mechanistic linear
LBW relationship in order to predict PK response in the
obese population. Dosing simulations using this LBW model
suggest that a relationship between LBW and CL may be a
possible explanation as to why dosing on a TBW basis is
unsuitable in the obese population. We encourage the use of

Fig. 5. Size descriptors used to scale CL in population PK models.
Scaling factors determined based on a median population TBW of
70 kg and height of 180 cm. a Within the normal weight range (BMI
20–25 kg m−2), all scale factors result in similarly scaled values of CL.
b Beyond this range, however, they become increasingly disparate.
As such, a nonlinear relationship is more easily identifiable in studies
which include a wider range of subject weights.BSA= body surface area.
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mechanistic covariates in order to enhance the future
usefulness of PK models.
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